
Enhancing Static Analysis for Practical Bug Detection: An
LLM-Integrated Approach

HAONAN LI, University of California, Riverside, USA
YU HAO, University of California, Riverside, USA
YIZHUO ZHAI, University of California, Riverside, USA
ZHIYUN QIAN, University of California, Riverside, USA

While static analysis is instrumental in uncovering software bugs, its precision in analyzing large and intricate
codebases remains challenging. The emerging prowess of Large Language Models (LLMs) offers a promising
avenue to address these complexities. In this paper, we present LLift, a pioneering framework that synergizes
static analysis and LLMs, with a spotlight on identifying Use Before Initialization (UBI) bugs within the Linux
kernel. Drawing from our insights into variable usage conventions in Linux, we enhance path analysis using
post-constraint guidance. This approach, combined with our methodically crafted procedures, empowers LLift
to adeptly handle the challenges of bug-specific modeling, extensive codebases, and the unpredictable nature
of LLMs. Our real-world evaluations identified four previously undiscovered UBI bugs in the mainstream
Linux kernel, which the Linux community has acknowledged. This study reaffirms the potential of marrying
static program analysis with LLMs, setting a compelling direction for future research in this area.

CCS Concepts: • Security and privacy → Systems security; • Computing methodologies → Natural
language processing; • Software and its engineering→ Automated static analysis.

Additional Key Words and Phrases: Static analysis, bug detection, large language model

ACM Reference Format:
Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. 2024. Enhancing Static Analysis for Practical Bug Detection:
An LLM-Integrated Approach. Proc. ACM Program. Lang. 8, OOPSLA1, Article 111 (April 2024), 26 pages.
https://doi.org/10.1145/3649828

1 INTRODUCTION
Static analysis has long stood as an important tool to understand program behaviors and improve
code quality, reliability, and security. Especially in the realm of bug discovery, it offers a proactive
mechanism to unearth bugs before the code is shipped to production. Yet, the complexity of modern
software, exemplified by massive codebases like the Linux kernel, strains the limits of static analysis.
At the heart of this lies a fundamental trade-off: precision versus scalability [Gosain and Sharma
2015; Park et al. 2022].

When applied to bug detection, precise static analyses, such as path-sensitive ones, can effectively
distinguish between actual bugs and false alarms. However, they fall short when faced with complex
programs. Conversely, scalable analyses, designed for giving quick but over-approximate answers,
suffer from a large number of false positives, clouding their utility and adoption in practice. UBITect
highlights this contrast [Zhai et al. 2020]. Tailored for detecting Use Before Initialization (UBI) bugs

Authors’ addresses: Haonan Li, University of California, Riverside, Riverside, USA, hli333@ucr.edu; Yu Hao, University of
California, Riverside, Riverside, USA, yhao016@ucr.edu; Yizhuo Zhai, University of California, Riverside, Riverside, USA,
yzhai003@ucr.edu; Zhiyun Qian, University of California, Riverside, Riverside, USA, zhiyunq@cs.ucr.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/4-ART111
https://doi.org/10.1145/3649828

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

HTTPS://ORCID.ORG/0000-0003-0357-0888
HTTPS://ORCID.ORG/0000-0002-3944-3162
HTTPS://ORCID.ORG/0009-0005-8243-3495
HTTPS://ORCID.ORG/0000-0003-1506-2522
https://doi.org/10.1145/3649828
https://orcid.org/0000-0003-0357-0888
https://orcid.org/0000-0002-3944-3162
https://orcid.org/0009-0005-8243-3495
https://orcid.org/0000-0003-1506-2522
https://doi.org/10.1145/3649828

111:2 Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian

in the Linux kernel, UBITect adopts a two-tiered bug detection strategy: a path-insensitive static
analysis for scalability and a follow-up symbolic execution (path-sensitive by definition) phase for
precision. Yet, even with this two-tier design, approximately 40% of the potential bugs reported in
the static analysis phase failed to be completed due to timeouts or memory limits in the symbolic
execution step.
The dilemma is clear: ignoring potential bug reports might mean missing genuine issues, but

forwarding them all to developers could swamp them with numerous false positives. The rise of
Large Language Models (LLMs) provides an encouraging solution to address this challenge. Their
proven ability to understand, generate, and even debug code offers an innovative approach to
tackle the inherent challenges of static analysis, as evidenced by recent studies [Chen et al. 2021;
Copilot 2023; LangChain 2023]. However, it’s not without its caveats. LLMs, while impressive,
can sometimes “hallucinate” — creating fictitious facts or misinterpreting code. Additionally, their
inherent randomness might lead to inconsistent analyses, and their limited context windows might
restrict the depth of their evaluations [Ji et al. 2023].

In this light, this paper presents LLift, an automated framework enhancing static analysis in bug
detection with LLMs. Firstly, we introduce the concept of Post-Constraint Guided Path Analysis, an
optimization under path-sensitive analysis. By focusing on the constraints that trigger the bugs,
this method can reduce the exploration paths and make the analysis of intricate vulnerabilities
more precise. Secondly, we address the hurdles and potential solutions of integrating LLMs into
static analysis for bug identification. Our pioneering framework, LLift, exemplifies the seamless
integration of classical static analysis and the prowess of LLMs.

We evaluate LLift primarily on the Linux kernel. Taking the undecided UBI warnings (40% for
the Linux kernel) in UBTect, we identified four new bugs in the mainstream Linux kernel. These
discoveries have been acknowledged by the Linux community. By fusing an optimized path analysis
with the discerning capabilities of LLMs, our goal is to propel static analysis into a new era of bug
identification. This paper documents this exploration, detailing our strategies and insights from
practical implementations.

We summarize our contributions as follows:
• New Opportunities.We introduce a novel approach to static analysis that enhances its capa-
bility for bug detection by introducing LLMs. To the best of our knowledge, we are the first to
demonstrate how to apply LLMs to address the limitations of static analysis and enhance its bug
finding capabilities.

• Post-Constraint Guided Path Analysis. We leverage post-constraint guided path pruning in
practical bug detection with large-scale codebases. It can effectively enhance the capabilities of
static analysis in path-sensitive analysis.

• Methodologies in Leveraging LLMs.We develop LLift, an innovative and fully automated
framework. LLift employs several prompt strategies to engage with LLMs, obtaining accurate
and reliable responses.

• Results.We rigorously investigate LLift by analyzing nearly 300 undecided cases from UBITect,
resulting in a reasonable precision rate (50%), and no missing bugs were found. Furthermore,
LLift reveals 13 undiscovered bugs from UBITect with extensive tests on 1000 cases, and four
are already confirmed as real bugs with the Linux community.

2 BACKGROUND & MOTIVATION
2.1 UBITect and Motivating Example
UBITect is a state-of-the-art static analysis solution aiming at finding Use Before Initialization (UBI)
bugs in the Linux kernel [Zhai et al. 2020]. It employs a two-stage pipeline whereas the first

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

Enhancing Static Analysis for Practical Bug Detection: An LLM-Integrated Approach 111:3

1 static int libcfs_ip_str2addr(...){
2 unsigned int a, b, c, d;
3 if (sscanf(str, "%u.%u.%u.%u%n", &a, &b,

&c, &d, &n) >= 4){↩→
4 // use of a, b, c, d
5 }
6 }
7 int sscanf(...){
8 va_list args;
9 int i;
10 va_start(args, fmt);
11 i = vsscanf(buf, fmt, args);
12 va_end(args);
13

14 return i;
15 }

16 int vsscanf(...){
17 const char *str = buf;
18 ...
19 while (*fmt) {
20 switch (*fmt++) {
21 case 'c': {
22 char *s = (char *)va_arg(args, char*);
23 ...
24 do { *s++ = *str++; }
25 while (...*str); num++;
26 }
27 }
28 ...
29 num++;
30 ...
31 }
32 return num;
33 }

Fig. 1. Code snippet of sscanf and its usecase. va_args and the unbounded loop in vsscanfmake it difficult

to analyze.

Static Analysis Symbolic
Execution LLift

result
40% undecided

UBITect

60% successful execution

Fig. 2. The high-level workflow of LLift. Start with the undecided cases by UBITect and determine whether

these potential bugs are true or false.

stage employs a flow-sensitive but path-insensitive static analysis. By design, this stage aims for
scalability and sacrifices precision, producing a significant number of potential bugs (i.e., ∼140k),
the vast majority of which are false alarms. The static analysis is imprecise primarily due to its lack
of path sensitivity.
Path Sensitivity. A path-sensitive analysis can distinguish different paths by considering their
path constraints. In the Linux kernel, the conditional initialization is a common practice, for example
in the code snippet shown in Fig 1, the check at Line 3 ensures that a, b, c, and d must be initialized
within the code block under this check (Line 4). However, the path-insensitive analysis cannot
distinguish the different path constraints (under the check or not). Hence, UBITect would claim a
potential bugs of use-before-initialization at Line 4 because it only considers the function sscanf()
“may initialize” parameters a, b, c, and d at Line 3.

UBITect tries to solve this insensitivity by adding a second stage of symbolic execution that
reduces false alarms by filtering their infeasible paths. However, 40% of the reported bugs are
discarded (including this sscanf case) due to the threshold of time (i.e., 10 minutes) or memory (i.e.,
2 GB) during the symbolic execution. As a result, despite the symbolic execution can filter some
false positives, it could potentially missing genuine bugs because of the scalability issue of symbolic
execution.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

111:4 Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian

2.2 General Challenges of Static Analysis in Practices
Ostensibly, the false alarms on the sscanf() case are due to imperfections in the design and
implementation of UBITect; however, we believe that the dilemma also represents the flaws that
generally appear in program analysis. We summarize two flaws as follows:
Inherent Knowledge Boundary.Developers need tomodel specific functions or language features.
Otherwise, they influence the correctness of the results. For compiler built-in functions, e.g.,
va_start() in our motivating example, their definitions are simply not available. Beyond this
example, an array of other scenarios are particularly prevalent in the Linux kernel. These situations
include assembly code, hardware behaviors, callback functions, and concurrency.

In practice, the knowledge boundary problem can be solved with human modeling. For example,
SVF [Sui and Xue 2016] manually identifies and models hundreds of common APIs in its analysis.
However, in practical terms, it is often time-consuming to discover and model all these cases
because they can be highly dependent on the analysis target, especially for a large and evolving
codebase such as the Linux kernel. This limitation often compromises the effectiveness of static
analysis, leaving it less precise and comprehensive than desired.
Exhaustive Path Exploration. Correctly handling cases like sscanf() is required to consider all
its possible behaviors associated with the return value. However, in this case, as Figure 1 shown,
the return value (num) of sscanf() is accumulated with two unbounded loops while(*fmt) and
while(*str) (str is buf). Considering the exponential explorations for all possible paths, it
becomes highly challenging to infer precisely which arguments will be initialized. In UBItect, it
leads to the timeout in symbolic execution and, therefore, fails to confirm this potential bug.
In general, Existing path-sensitive static analysis (and symbolic execution) techniques operate

under a methodical but exhaustive paradigm, exploring all potential execution paths through the
codebase. While this approach is theoretically comprehensive, it often leads to path explosion.

2.3 Capability of LLMs
Recent advances in Large Language Models (LLMs) [OpenAI (2023) 2023b] offer a promising alter-
native to summarizing code behaviors [Ouyang et al. 2022] in a flexible way which “sidestep” the
aforementioned challenges. LLMs are trained with extensive datasets, including natural language
and source code [Ouyang et al. 2022], they can effectively work with complicated code snippets and
produce an intuitive comprehension; for example, they can summarize loop invariants that are hard
to perform using traditional program analysis methods [Pei et al. 2023a]. Similarly, we observe that
LLMs can recognize path conditions and control flow constructs within the provided code, allowing
them to reason about different execution paths (even in loops). While traditional static analysis
methods provide formal and exhaustive analysis, LLMs can present a more intuitive, human-like
comprehension. Therefore, when traditional static analysis methods fall short, e.g., as in the 40%
undecided cases in UBITect, we resort to LLMs, which can complement existing methods.

3 PROBLEM FORMULATION
In this section, we first define the UBI bug and provide the general idea of LLift in §3.1. Then,
we demonstrate our observation and optimization of path pruning in §3.2. Lastly, we propose a
conceptual workflow of LLift in §3.3.

3.1 System Definition
3.1.1 Use-Before-Initialization. AUse Before Initialization (UBI) bug refers to the erroneous scenario
where a variable 𝑣 is accessed or involved in any operation prior to its correct initialization. Let:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

Enhancing Static Analysis for Practical Bug Detection: An LLM-Integrated Approach 111:5

1 int F(){
2 int v; // declare of 𝑣

3 if (constraint)
4 init(&v); // initializer of 𝑣

5 use(v); // use of 𝑣

6 }

Fig. 3. A typical example of a UBI bug.

• 𝑣 is a local variable.
• 𝐹 is the function that declares 𝑣 .
• 𝑈 signifies a use operation involving 𝑣 .
• 𝐼 represents an initializer that can initialize 𝑣 .
Then 𝑣 is used before initialization at𝑈 , if there exists

a potential execution path that makes the use of 𝑣 , i.e., 𝑈
ahead of all its initializers 𝐼 . Note we consider both𝑈 and
𝐼 as function invocations within 𝐹 . Figure 3 demonstrates
a simplified UBI bug. In this case, the variable 𝑣 may be used (Line 5) before its initialization (Line
4) if the constraint is not satisfied (Line 3).

3.1.2 Static Analysis Report (SAR). We assume an imprecise static analysis is applied to detect
potential UBI bugs (i.e., has false positives). Each potential bug is accompanied by an Static Analysis
Report (SAR), which is a tuple as follows (symbols are defined above):

SAR = ⟨𝑣,𝑈 , 𝐹 ⟩ (1)

3.1.3 Initializer and its effects. As mentioned, an initializer 𝐼 is a function invoked within 𝐹 that
can initialize a variable 𝑣 . More generally, an initializer can initialize more than a single variable.
For example, for a function 𝑅 with 𝑉𝑎𝑟𝑠 = {𝑣0, 𝑣1}, if 𝑅 initializes 𝑣0 in all cases (must_init) and 𝑣1
under some conditions (may_init), the results of the initialization of variables can be expressed as
FuncInit(𝑅) = {𝑣0 ↦→ must_init, 𝑣1 ↦→ may_init}. We could also say FuncInit(𝑅) [𝑣0] = must_init.

Namely, we define the initialization of variables FuncInit with variables 𝑉𝑎𝑟𝑠 in an initializer as:

FuncInit = 𝑉𝑎𝑟𝑠 ↦→ {must_init, may_init} (2)

In general, LLift takes the SAR as its input, finds possible initializers, analyzes the FuncInit of
these initializers, and concludes whether the SAR indicates a real bug.

3.2 Post-Constraint Guided Path Analysis
The intuition of the post-constraint guided path analysis is to consider the initializer’s return value
(or any forms of outcome) and the path constraint of the use of the suspicious variable (which we
refer to as post-constraint). By considering these constraints, we can usually get postconditions
with fewer cases of initializers, and therefore, get a more precise bug report than UBITect.

3.2.1 Outcome and Postcondition. We consider the outcome O of initializers. Then, in the context
of UBI detection, we define the postcondition P of an initializer as: P = O×FuncInit. For example,
the sscanf(...) case in Figure 1, its postcondition can be expressed as:

P1 : {𝑟𝑒𝑡 ↦→ 0, ⟦must_init⟧ = ∅}
P2 : {𝑟𝑒𝑡 ↦→ 1, ⟦must_init⟧ = {𝑎}}
P3 : {𝑟𝑒𝑡 ↦→ 2, ⟦must_init⟧ = {𝑎, 𝑏}}
P4 : {𝑟𝑒𝑡 ↦→ 3, ⟦must_init⟧ = {𝑎, 𝑏, 𝑐}}
P5 : {𝑟𝑒𝑡 ↦→ 4, ⟦must_init⟧ = {𝑎, 𝑏, 𝑐, 𝑑}}
P6 : {𝑟𝑒𝑡 ↦→ 5, ⟦must_init⟧ = {𝑎, 𝑏, 𝑐, 𝑑, 𝑛}}

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

111:6 Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian

Here, the P1 − P6 represent different possible postconditions of the call of sscanf(). ⟦must_init⟧
is the set of all variables that must be initialized.
In the context of UBI detection, we notice that not all possibilities are worth noting; instead,

only the outcomes making 𝑈 reachable are required for UBI detection. We call the constraint that
makes the use reachable post-constraint C𝑝𝑜𝑠𝑡 [Huang 2007]. The qualified postcondition, P𝑞𝑢𝑎𝑙 , is
a subset of P refined by C𝑝𝑜𝑠𝑡 :

P𝑞𝑢𝑎𝑙 = P|C𝑝𝑜𝑠𝑡
For the sscanf() case, we have the post-constraint as C𝑝𝑜𝑠𝑡 = ret ≥ 4; therefore, the qualified

postcondition would be P5 ∧ P6, which ensures that variables 𝑎, 𝑏, 𝑐, and 𝑑 must be initialized.
Therefore, we have ∀𝑣 ∈ {𝑎, 𝑏, 𝑐, 𝑑}, FuncInit[𝑣] =𝑚𝑢𝑠𝑡_𝑖𝑛𝑖𝑡 , and no UBI bug happens in this case.

1 void I(int& v){
2 if (c_post){
3 //𝑝𝑎𝑡ℎ1
4 *v = 0;
5 }
6 else {
7 //𝑝𝑎𝑡ℎ2
8 }
9 }
10 void F(){
11 int v;
12 I(v);
13 if(c_post)
14 use(v);
15 }

Fig. 4. An example of

direct application. The

𝑝𝑎𝑡ℎ2 can be pruned.

3.2.2 Post-Constraint Guided Analysis. Given the constraints of the use of
the suspicious variable C𝑝𝑜𝑠𝑡 , it is possible to prune paths that inherently
do not meet those expectations when analyzing the initializer. Namely, we
take the post-constraint in advance and enable the subsequent analysis
to obtain the qualified postcondition of the initializer directly.

Specifically, we categorize the post-constraint guided analysis into two
scenarios, direct application and outcome conflict, in applying this
optimization.
Direct Application. For example in Figure 4, we have C𝑝𝑜𝑠𝑡 = c_post
that makes the use(v) reachable, we then can conclude that 𝑝𝑎𝑡ℎ2 can
be pruned because its path constraint 𝜙2 = ¬c_post conflicts with C𝑝𝑜𝑠𝑡 .
More formally, for a given C𝑝𝑜𝑠𝑡 that is extracted from an SAR, we

consider it with the path constraint in the initializer. For each 𝑝𝑎𝑡ℎ𝑖 in the
initializer, the 𝑝𝑎𝑡ℎ can be pruned if 𝜙𝑝𝑎𝑡ℎ ∧ C𝑝𝑜𝑠𝑡 is not satisfiable.
Outcome Conflict. For example in Figure 5, the C𝑝𝑜𝑠𝑡 requires the return
value of the initializer to be 0 (𝑟𝑒𝑡_𝑣𝑎𝑙𝑢𝑒 = 0), the outcome of 𝑝𝑎𝑡ℎ2 will

cause 𝑟𝑒𝑡_𝑣𝑎𝑙𝑢𝑒 to be -1, which conflicts with the post-constraint. This way, 𝑝𝑎𝑡ℎ2 can be pruned.
1 int I(){
2 if (...){ //𝑝𝑎𝑡ℎ1
3 return 0;
4 }
5 else{ //𝑝𝑎𝑡ℎ2
6 return -1;
7 }
8 }
9 void F(){
10 int v;
11 int ret = I(v);
12 if (ret == 0){
13 use(v);
14 }
15 }

Fig. 5. An example of out-

come conflicts. The 𝑝𝑎𝑡ℎ2
can be pruned.

More formally, let O(𝑝𝑎𝑡ℎ) denote the set of all outcomes or effects
produced by the 𝑝𝑎𝑡ℎ. Then the path can be pruned if we can find an
outcome 𝑜 ∈ O(𝑝𝑎𝑡ℎ) that makes 𝑜 ∧ ¬C𝑝𝑜𝑠𝑡 satisfiable.
The post-constraint guided analysis enables efficient path pruning

in the analysis of the initializer. We leverage LLM to implement the
analysis, and we show the details in §4.3.

3.3 Conceptual Workflow
Given a bug report (SAR) containing a suspicious variable 𝑣 , its usage
𝑈 , and the function 𝐹 , the workflow Φ is as follows:

(1) Φ1 (SAR) → {𝐼 }: Identify all potential initializers for 𝑣 from the
bug report.

(2) Φ2 (SAR, 𝐼) → C𝑝𝑜𝑠𝑡 : Extract the C𝑝𝑜𝑠𝑡 from the bug report for
each possible 𝐼 .

(3) Φ3 (SAR, {𝐼 , C𝑝𝑜𝑠𝑡 }) → InitStatus(𝑣): Summarize the initial-
ization status for variable 𝑣 after all possible initializers,
i.e.,

⋃
𝐼 FuncInit(𝐼) [𝑣]. For 𝑣 , if there exists any 𝐼 that must initialize 𝑣 , then the

InitStatus(𝑣)=must_init. with respect to their corresponding C𝑝𝑜𝑠𝑡 .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

Enhancing Static Analysis for Practical Bug Detection: An LLM-Integrated Approach 111:7

UBITect reports potential use-
before-initialization bugs

Identify the initializer: sscanf

Extract the post-constraint:
ret>=4

Analyze the initializer with
post-constraint guidance

1

2

3

Fig. 6. Example run of LLift. For each potential bug, LLift ① (Φ1) identifies its initializer, ② (Φ2) extracts the
post-constraints of the initializer, and ③ (Φ3) analyzes the behavior of the initializer with the post-constraints

via LLM.

3.3.1 Decision Policy. The decision policy Δ is defined as:

Δ(InitStatus(𝑣) = must_init) : non-bug
Δ(InitStatus(𝑣) ≠ must_init) : potential bug

This policy adopts a conservative approach by treating all variables not marked as must_init
as potential vulnerabilities. And it is worth noting that this policy may introduce some false
positives. For example, it might over-approximate the initialization status due to the absence of
path constraints outside 𝐹 .

Q: … Analyze the given C code in the Linux
kernel,
looking at this function
[libcfs_ip_str2addr] for variables <a,
b, c, d>.
You are required to see if these variables
must be initialized, or may (and may not)
be initialized.

You should (1) find possible initializers,
(2) considering their post-constraints, and
(3) analyze their initialization status for
variables <a, b, c, d>

A: the initializer is <sscanf>, with post-
constraint <sscanf(…)>=4>, variables
<a, b, c, d> must be initialized.

Fig. 7. Simple prompt design, following

three stages in our workflow in §3.3. The

case-specific prompts are highlighted in

green. <> indicates the variables and func-

tions, and the [] represent the function def-

inition in source code.

If Δ says the SAR is a potential bug, it considers this
case from the static analysis as a true bug; otherwise, it is
filtered. For single initializer cases (i.e., only one possible
initializer can be found), we can also directly see the
result from FuncInit(𝐼).

For multiple initializers withmay_init, we need to con-
sider the conditions of initializing 𝑣 . This would theo-
retically require a path-sensitive analyzer to output the
conditions under which 𝐼 initializes 𝑣 if it is may_init.
Instead of dealing with these conditions precisely, we
simply summarize them as may_init. The lack of consid-
erations of (pre)conditions for multiple initializers could
be one of the reasons for false positives, even though we
do not find such cases in our experiment.

4 LLM-BASED PROGRAM ANALYSIS
We introduced a conceptual workflow in Section §3.3.
Elaborating on that foundation, Figure 7 showcases a
simple LLM-based analysis for our motivating example.
We can see that it can successfully infer all variables of
a, b, c, d must be initialized.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

111:8 Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian

Q: looking at this function [libcfs_ip_str2addr],
what are possible initializers for variables <a, b,
c, d> 

A: the initializer is <sscanf>

Φ1 Identify the initializer

Q: looking at this function [libcfs_ip_str2addr],

what are post-constraints for variables <a, b, c,
d>, with the initializer <sscanf> 

A: the post-constraint is <sscanf(…)>=4>

Φ2 Extract the post-constraint

Q: looking at this function
[libcfs_ip_str2addr], analyze the
initializer <sscanf> for variables <a,
b, c, d>, with post-constraint
<sscanf(…)>=4>, how these
variables are initialized in this
initializer? 

A: After the analysis, all variables
in <a, b, c, d> must be initialized.

Φ3 Analyze the initializer w/
post-constraint guidance

Fig. 8. A three-step LLM-based analysis, following three stages in our workflow in §3.3. The case-specific

prompts are highlighted in green. <> highlight the previous results, and the [libcfs_ip_str2addr] is a

placeholder for the caller function definition of libcfs_ip_str2addr in the source code. The prompts and

responses are simplified.

Yet, this simple prompt design is not effective in reality, especially for more complex cases than
sscanf(), even with the advanced knowledge and analytical capabilities of cutting-edge LLMs.
We also test this prompt in §6.3 as “simple prompt”.

4.1 Prompt Overview
Figure 8 illustrates the overall process of a three-step LLM-based analysis. This design is aligned
with the description in Figure 6. In general, this design decomposes the entire workflow into three
pieces. Responses from the previous steps pass to the next turns, making each piece become smaller
and more manageable for LLMs.
We also add more details at each step, shown in Figure 8. Because we also face a series of

challenges in practice, especially for program analysis on the Linux kernel. We present these
challenges and our solutions in the following parts of this section.

4.2 Design Challenges and Solutions
It is non-trivial to prompt LLMs effectively [Shieh 2023; Zhao et al. 2023]. During the design of
LLift, we meet the following challenges and propose solutions correspondingly.
C1. Limited Understanding of Post-Constraint. Despite the latest LLMs (e.g., GPT-4) being able
to explain the definition of post-constraint and apply them in simple scenarios, their capacity to
identify bugs, in general, is limited [OpenAI (2023) 2023b]. Without more explanation and guidance,
LLMs would often ignore important post-constraints and identify bugs incorrectly. This is because
of their limited training in program comprehension and bug detection.
C2. Token Limitations. It is known that Large Language Models (LLMs) have token limitations.
For example, GPT-3.5 supports 16k tokens and GPT-4 supports 32k tokens [OpenAI (2023) 2023a].
The token limitation is a fundamental challenge for all transformer-based architectures, such as
GPT series, due to the complexity of 𝑂 (𝑁 2) in computing attention [Vaswani et al. 2017]. This
restricts the provision of multiple function contents for our tasks.
C3. Unreliable and Inconsistent Response. LLMs are known to result in unreliable and
inconsistent responses due to hallucination and stochasticity [Zhao et al. 2023]. Stochasticity refers

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

Enhancing Static Analysis for Practical Bug Detection: An LLM-Integrated Approach 111:9

to the inherent unpredictability in the model’s outputs [Vaswani et al. 2017]; and the hallucination
refers to LLMs generating nonsensical or unfaithful responses [Ji et al. 2023; Zheng et al. 2023]. By
design, the stochasticity can be mitigated with lower temperature, a hyperparameter controlling
the degree of randomness in outputs [Salamone 2021]; however, reducing temperature may impair
the model’s exploring ability [Xu et al. 2022] and, therefore may miss real vulnerabilities.

Facing these challenges, we propose the following design components to solve them:
• To tackle challenge C1 (Post-Constraint), we propose to encode (D#1) Post-Constraint Guided
Path Analysis. where we teach LLMs by examples of post-constraint, including code patterns.
This is also a well-known strategy in LLM research, i.e., few-shot in-context learning [Song et al.
2023]. This approach enables LLMs to learn from a small number of demonstrative examples,
assimilate the underlying patterns, and apply this understanding to incorporate post-constraint
guidance in our analysis.

• To tackle challenge C2 (Token Limitation), We employ two strategies: (D#2) Progressive Prompt.
Instead of copying a large number of function bodies (i.e., subroutines), we only provide function
details on demand, i.e., when LLMs are not able to conduct a result immediately. (D#3) Task
Decomposition.We break down the problem into sub-problems that can be solved easily. Figure 8
illustrates one aspect of task decomposition. Each step (Φ) is further split into multiple prompt-
response pairs (we refer to turns) in practice.

• To tackle challenge C3 (Unreliable Response), we employ the following strategies: (D#4) Self-
Validation.We ask LLMs to review and correct their previous responses. This helps improve
the consistency and accuracy based on our observation. Besides, (D#2) Progressive Prompt

and (D#3) Task Decomposition also help to address this challenge. Additionally, we implement
majority voting by running each case multiple times and use majority voting to combat
stochasticity.

We elaborate the design of (D#1 - #4) Post-Constraint Guided Path Analysis, Progressive
Prompts, Task Decomposition, and Self-Validation detailed in the rest of this section. The
effectiveness and efficiency of these design strategies are rigorously evaluated in §6.2, revealing a
substantial enhancement in bug detection within the Linux kernel.

4.3 D#1: Post-Constraint Guided Path Analysis
The Linux kernel frequently employs return value checks as illustrated in Table 1. Through our
examination of sampled non-bug instances, we found that the sensitivity to such checks (i.e., taking
them into account during the analysis) can effectively eliminate over 70% non-bug cases. In LLift,
we prompt LLMs to analyze these checks, collect C𝑝𝑜𝑠𝑡 and summarize the function with respect
to the C𝑝𝑜𝑠𝑡 . It is worth noting that current LLMs (e.g., GPT-4) are not natively sensitive to the
post-constraints, i.e., without additional instructions, LLMs usually overlook the post-constraints.
Therefore, we teach the LLM the rules of post-constraints through few-shot in-context learning.
We elaborate the design details as follows.

4.3.1 Post-Constraints Extraction. To extract the qualified postcondition, we first determine the
post-constraints that lead to the use of suspicious variables. We incorporate few-shot in-context
learning to teach LLMs how to extract such constraints from the caller context. Table 1 demonstrates
several types and examples of post-constraint in the Linux kernel. We describe how we teach them
to LLMs with in-context learning.
• Check Before Use (Type A). The motivating example we showed is Type A; by looking at
its check, the post-constraint should be 𝑟𝑒𝑡 ≥ 4. Type A’ describes a similar case while in
switch-cases, with expected output 𝑟𝑒𝑡 ↦→ crticial_case.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

111:10 Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian

Table 1. Two types of post-constraints: check before use, failure check

Check Before Use Failure Check

Type A: Type B:
if (sscanf(...) >= 4) {
use(a, b, c, d);

}

err = func(&a);
if (err) { return/break/goto; }
use(a)

Type A’: Type B’:
switch(ret=func(&a)){

case some_irrelevant_case:
do_something(...);
break;

case critical_case:
use(a);

}

while(func(&a)){
do_something(...);

}
use(a);

1 int func(int* a){
2 if(some_condi)
3 return -1;
4 *a = ... //init of 𝑎

5 return 0;
6 }

must_init = ∅ if:
C𝑝𝑜𝑠𝑡 = ⊤ or
∀𝑝𝑠 ∈ {¬some_condi} : 𝑝𝑠 ⊥ C𝑝𝑜𝑠𝑡 ∧ ∀𝑜 ∈ {𝑟𝑒𝑡 ↦→ 0} : 𝑜 ⊥ C𝑝𝑜𝑠𝑡
must_init = {𝑎} if:
(¬some_condi) ∧ C𝑝𝑜𝑠𝑡 or
(𝑟𝑒𝑡 ↦→ 0) ∧ C𝑝𝑜𝑠𝑡

Fig. 9. The func is an initializer of 𝑎. 𝑎 is may_init or must_init under different post-constraints. ⊥ stands

for “is disjoint from”. In this function, we have the set of path constraints {some_condi,¬some_condi} and
O = {𝑟𝑒𝑡 ↦→ 0, 𝑟𝑒𝑡 ↦→ −1}, if the post-constraint is ¬come_condi (direct application) or 𝑟𝑒𝑡 ↦→ 0 (outcome

conflict), we can prune out the path under some_condi and conclude 𝑎 must be initialized.

• Failure Check (Type B). This pattern captures the opposite constraints. They are commonly
used in the Linux kernel where the error conditions cause the use to become unreachable, as
illustrated in Type B, the post-constraint is 𝑒𝑟𝑟 ↦→ 0. Type B’ depicts a variant where the initializer
keeps retrying until success, with expected output 𝑟𝑒𝑡 ↦→ 0, which indicates its first successful
execution to break the loop.

4.3.2 Post-Constraint Guidance. Following §3.2, Figure 9 presents a concrete example of post-
constraint guided path analysis. This case shows a simple initializer 𝑖 (𝑎) of the variable 𝑎. Given
a potential early return at Line 3, the initialization (Line 4) may not be executed. As such, the
qualified postconditions depend on the post-constraints C𝑝𝑜𝑠𝑡 . Given different C𝑝𝑜𝑠𝑡 , there are:
• If the use of variable a is unconditional, i.e., C𝑝𝑜𝑠𝑡 = ⊤, the variable 𝑎 is labeled as may_init
given that the initialization may not be reached.
In general, if all path constraints and outcomes of must_init are disjoint from C𝑝𝑜𝑠𝑡 , no path
can be pruned out. We could also conclude 𝑎 as may_init.

• If the use of variable 𝑎 is conditional with constraints, i.e., C𝑝𝑜𝑠𝑡 ≠ ⊤, two cases emerge:
(1) C𝑝𝑜𝑠𝑡 conflicts with the constraints of the path (e.g., some_condi), or
(2) C𝑝𝑜𝑠𝑡 conflicts with the path outcome (e.g., return -1).
In these instances, C𝑝𝑜𝑠𝑡 could be some_condi or func(...)==0 and we can designate *a as
must_init.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

Enhancing Static Analysis for Practical Bug Detection: An LLM-Integrated Approach 111:11

Q: summarize the function
<p9_pdu_readf(…, &ecode)>, will it
initialize variable <ecode>?

A: p9_pdu_readf presumably reads
data from a P9 protocol data unit
(PDU) …

A: conclude it in must_init

w/o progressive prompt

Q: summarize the function <p9_pdu_readf(…,
&ecode)>, will it initialize variable <ecode>? If
you encounter uncertainty due to a lack of
function definitions, please signal your need, and
I’ll supply them

A: p9_pdu_readf presumably reads data from
a P9 protocol data unit (PDU) … please provide
the function of p9_pdu_readf

Q: the definition of p9_pdu_readf is …

A: conclude it in may_init

w/ progressive prompt

❌
✅

Fig. 10. A demonstration of leveraging progressive prompt when interactive with ChatGPT. The conversation

is simplified. Q denotes our prompt, and A denotes LLM’s response. Without the progressive prompt, the

LLM may miss its implementation details and conclude with an incorrect answer. We will study this case

carefully in §6.5.

We provide the examples and description above to LLMs as a part of the prompt to let LLMs
understand the post-constraint. This approach also utilizes few-shot in-context learning, using
examples that allow LLMs to learn concepts they did not learn in training. While there are other
cases of using post-constraint we have not considered, we covermost scenarios we have encountered
in analyzing the Linux kernel. Besides, the few-shot in-context learning methodology is extensible,
making it easy for our design to adapt to new rules and scenarios.

4.4 D#2: Progressive Prompt
The Linux kernel has a large and evolving codebase. Therefore, even though LLMs has already
accumulated substantial knowledge about it during training, it may still fail to recognize some
functions (e.g., newly added or modified). Tomake things worse, without any additional instructions,
LLMs tend to guess andmake up function behaviors in response to our “summarization” requirement.
On the other hand, flooding the LLMs with every subroutine’s source code risks exceeding their
context window limits.

Inspired by recent works teaching LLMs to interact with external information and tools [Karpas
et al. 2022; Parisi et al. 2022; Schick et al. 2023; Yao et al. 2023b], we apply in-context learning to
teach LLMs asking for function definitions when necessary. Illustrated in Figure 10 and Figure 11,
we allow the LLM to return during the analysis with “tell me more information”, which we then
provide to enable LLM to continue the analysis.
We refer to this approach as Progressive Prompt; it fosters a dynamic interaction with the LLM

rather than expecting a response immediately. Throughout this iterative exchange, we consistently
prompt the LLM: “If you encounter uncertainty due to a lack of function definitions, please tell your
need to me, and I’ll supply them”. Should the LLM need more information, LLift will promptly
extract the relevant details on demand from the source code and provide it to the LLM automatically.

Specifically, We teach the LLM to ask for more information with a specific format:

[{"type":"function_def", "name":"some_func" }]

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

111:12 Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian

Prompt LLMs to extract the
 initializer & post-constraints

Perform Self-validation
with previous response

Conclude the previous
response in JSON

Prompt LLMs to summarize
the initializer

Perform Progressive Prompt
 with requested information

Perform Self-validation with
previous response

Conclude the previous
response in JSON

Convo.1: Initializer &
 Post-constraints Extraction

Convo.2: Initializer Behavior Summarization

If need more If succeed

Fig. 11. The detailed workflow of LLift. Each gray box represents a turn, i.e., (prompt, response) pair. The

dashed boxes represent a complete conversation (Convo) containing several turns.

Subsequently, LLift scans this format in the LLM’s response. For each requested function
definition, LLift supplies its corresponding code along with comments extracted from the Linux
source code.
The iterative process continues until either the LLM no longer requests additional information

or LLift cannot supply the requested details. In certain situations where LLift is unable to provide
more information (e.g., the definition of an indirect call), LLift will still prompt the LLM to proceed
with the analysis. In these instances, the LLM is encouraged to infer the behavior based on the
available data and its inherent knowledge, thereby facilitating continued analysis even when not
all information is directly accessible.

The progressive prompt also enhances the support for unfamiliar functions. Figure10 shows its
effectiveness on a real UBI bug (which UBITect missed). ChatGPT is unfamiliar with p9_pdu_readf,
guesses its behavior from its name, and concludes an incorrect answer. Fortunately, the progressive
prompt solves the case effectively. We study this case more carefully in §6.5 (Case III).

4.5 Other Prompt Design
We employ two additional prompt optimization strategies, task decomposition, and self-validation,
in the design of LLift.

4.5.1 D#3: Task Decomposition. Task decomposition is a universal idea used in LLM prompting.
As illustrated in Figure 11, we first employ a multi-conversation approach to complete the task.
Each conversation essentially consists of multiple turns. Compared to combining all three subtasks
into a single conversation, this division allows a more manageable and effective way of achieving
the task. The efficacy of this task decomposition approach is further evaluated in §6.2.
Structured Output.Our workflow necessitates a structured output for automation. However, LLMs
often produce suboptimal results when directly prompted to respond only with a structured format.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

Enhancing Static Analysis for Practical Bug Detection: An LLM-Integrated Approach 111:13

As LLMs build responses incrementally, word-by-word, based on preceding outputs [Vaswani et al.
2017], direct prompts to output JSON may interrupt their thought progression. This emphasizes the
importance of first soliciting responses in natural language to ensure comprehensive and effective
reasoning. Consequently, we instruct the LLM first to articulate their thought processes in English,
followed by a subsequent prompt to transform their response into a JSON summary.

4.5.2 D#4: Self-Validation. LLMs can sometimes display unpredictable or inconsistent behaviors,
particularly in complex scenarios involving detailed logical constructs. Consider a case where an
initializer carries the postcondition must_init with some constraint 𝑐 . LLMs may still (sometimes)
mistakenly assume it to be may_init, despite the explicit presence of C𝑝𝑜𝑠𝑡 = 𝑐 . Also, LLMs might
sometimes erroneously make up a non-existent post-constraint and incorrectly mark a may_init
case as must_init.

These phenomena may stem from a lack of relevant training data, which aligns with our obser-
vation, for LLMs are often unaware of post-constraint. An Intuition is that if we prompt LLMs to
review their response, they will be able to notice the previous mistakes and thus correct themselves
to elicit the correct answer eventually. We refer to this practice as self-validation.
We also try to avoid false negatives by emphasizing “may_init” is always a safe choice when

you meet uncertain functions and code in the self-validation. This strategy may sacrifice precision,
but it tries to ensure the soundness as possible.

We implement self-validation with a series of rules, and all rules are in the form of if statements;
for example, “When {cases}, you should {action}”. Self-validation does not contain any posterior
knowledge. It only emphasizes some rules that should always be satisfied. Despite not bringing
new information, this practice allows LLMs to correct their mistakes and yield better results. We
evaluate the effect of self-validation in §6.2.

4.5.3 Additional Prompting Strategies. To further optimize the efficacy of our model, we have
incorporated several additional strategies into our prompt design:
• Chain-of-Thought. Leveraging the Chain-of-Thought (CoT) approach, we encourage the LLMs

to engage in stepwise reasoning, using the phrase “think step by step”. This not only helps generate
longer, comprehensive responses, but it also provides intermediate results at each juncture of the
thought process. Previous studies suggest the CoT approach considerably enhances the LLMs’
reasoning capabilities [Chen et al. 2023a]. We incorporate the CoT strategy into every prompt.

• Source Code Analysis. Rather than analyzing abstract representations, we focus our attention
on the functions within the source code. This approach not only economizes on token use
compared to LLVM IR but also allows the model to leverage the semantic richness of variable
names and other programming constructs to conduct a more nuanced analysis.

Designing effective prompts involves many intriguing nuances. For instance, the substitution of
words with their synonyms can impact the final result. A striking example is the paradoxical
interpretation of negations by the LLM. If prompted with a command like “don’t do something”, the
LLM occasionally comprehends it as “do something”, the exact opposite of the intended instruction.
In our prompt design, we avoid unnecessary negations and always favor affirmative sentences.
There are still some interesting details in designing an effective prompt, but we will not list them
all due to space constraints since they do not change the overall strategy. The interested reader is
referred to our open-source project for further details on prompt design and implementation1.

1https://sites.google.com/view/llift-open/prompt

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

https://sites.google.com/view/llift-open/prompt

111:14 Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian

5 IMPLEMENTATION
We implement the prototype of LLift based on OpenAI’s GPT-4 API [OpenAI (2022) 2022] (gpt-4-
0613). We describe some implementation details in the following aspects:
UBITect. UBITect is a prominent UBI detector for the Linux kernel. Compared to tools such as
cppchecker and clang static analysis, UBITect can analyze larger scopes of code and identify more
potential bugs by design [Zhai et al. 2020]. Crucially, the static analysis performed by UBITect
strives for soundness, leading to a large number of bug reports. Given the many undecided cases
presented by UBITect, there is ample opportunity for further improvements. Hence, we target
UBITect for the implementation and assessment of LLift.
Interaction with LLMs. LLift’s interaction with LLMs is fully automated and managed by a
simple Python script containing roughly 1,000 lines of code. In addition, it uses seven prompts,
constituting about 2,000 tokens in prompts. Besides sending prompts and waiting for responses, our
script also 1) interacts with LLMs in the progressive prompt design, 2) locates function definitions
within the Linux source code, and 3) processes responses from LLMs, then receives and stores them
in a database.
Hyper-Parameters. There are several hyper-parameters in calling the APIs provided by OpenAI.
We choose max_token and temperature to 1,024 and 1.0, respectively. max_token controls the
output length; since LLMs always predict the next words by the previous output, the longer output
can benefit and allow its reasoning. However, too many tokens for single requests can quickly
exhaust the context window for a long conversation (A conversation contains multiple prompts
and responses pairs, so we always need to put all previous turns for next response), and thus we
pick 1,024 as a balance.
The temperature controls the randomness and also the ability to reason. Intuitively, we want

the analysis to be as non-random as possible and reduce the temperature (it can take a value
between 0 and 2 for GPT models); however, an overly low temperature can result in repetitive or
overly simplistic responses. We simply set it to 1.0 (also the default of gpt-4-0613), which allows
for high-quality responses in our experiment. While carefully adjusting the temperature for each
conversation or even each turn has the potential to improve results, we find that the default
temperature can already produce good results.

6 EVALUATION
Our evaluation aims to address the following research questions.
• RQ1 (Performance): How much enhancement can LLift bring to UBITect?
• RQ2 (Comparison):How does the performance of individual components within LLift compare
to that of the final design?

• RQ3 (Model Versatility): How does LLift perform when applied to LLMs other than GPT-4?
• RQ4 (Generality): How does LLift perform on projects other than the Linux kernel?

We evaluate these research questions on GPT-4, under API from OpenAI with version gpt4-0613.
For RQ3, we also test GPT-3.5 with version gpt-3.5-turbo-0613, Bard, and Claude 2 additionally.
Evaluation target: Linux kernel. We primarily focus on the Linux kernel where UBITect was
originally evaluated against. We include all potential bugs output by its static analysis stage but
experienced timeout or memory exhaustion during its symbolic execution stage. Overall, UBITect’s
static analysis stage produced 140,000 potential bugs, with symbolic execution able to process only
60%, leaving 53,000 cases undecided, which means that these cases are generally difficult for static
analysis or symbolic execution to analyze. Considering the non-existence of the ground truth of

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

Enhancing Static Analysis for Practical Bug Detection: An LLM-Integrated Approach 111:15

Table 2. True positives identified by LLift from Rnd-300, with extended to 1000 cases, analyzing Linux v4.14.

Initializer Caller File Path Variable Line

read_reg get_signal_parameters drivers/media/dvb-frontends/stv0910.c tmp 504
regmap_read isc_update_profile drivers/media/platform/atmel/atmel-isc.c sr 664
ep0_read_setup ep0_handle_setup drivers/usb/mtu3/mtu3_gadget_ep0.c setup.bRequestType 637
regmap_read mdio_sc_cfg_reg_write drivers/net/ethernet/hisilicon/hns_mdio.c reg_value 169
bcm3510_do_hab_cmd bcm3510_check_firmware_version drivers/media/dvb-frontends/bcm3510.c ver.demod_version 666

readCapabilityRid airo_get_range drivers/net/wireless/cisco/airo.c cap_rid.softCap 6936
e1e_rphy __e1000_resume drivers/net/ethernet/intel/e1000e/netdev.c phy_data 6580
pci_read_config_dword adm8211_probe drivers/net/wireless/admtek/adm8211.c reg 1814
lan78xx_read_reg lan78xx_write_raw_otp drivers/net/usb/lan78xx.c buf 873
t1_tpi_read my3126_phy_reset drivers/net/ethernet/chelsio/cxgb/my3126.c val 193
pci_read_config_dword quirk_intel_purley_xeon_ras_cap arch/x86/kernel/quirks.c capid0 562
ata_timing_compute opti82c46x_set_piomode drivers/ata/pata_legacy.c &tp 564
pt_completion pt_req_sense drivers/block/paride/pt.c buf 368

these 53,000 cases, We randomly chose 300 from the 53,000 cases (refers to Rnd-300) for evaluating
LLift.
Other evaluation targets. To showcase the generality of LLift, we additionally adapted UBITect
to evaluate Nginx (version 1.18.0) [Nginx 2020] and EDK II (version stable202211) [TianoCore 2022].
For Nginx, we are not aware of any known UBI bugs whereas there do exist a few in EDK II.
Turns. Due to the progressive prompt, each case may require different turns. In Rnd-300, the
average number of turns is 2.78, with a max of 8 and a variance of 1.20.
Cost. On average, it costs 7,000 tokens and $0.43 in GPT-4 to analyze each potential bug in rand-300.
Also, we spent about 50 human hours inspecting all results and obtain the ground truth.

6.1 RQ1: Performance
PrecisionAnalysis.Along with the result of Rnd-300, LLift reports ten positives, and wemanually
determine that five are true positives. This represents a precision of 50%.
Furthermore, as shown in Table 2, we continue the running and extend to 1,000 cases. LLift

reports 26 positives among the 1,000 cases overall, where 13 of them are true positives based
on our manual inspection. In keeping with UBITect and focusing on the analysis of Linux v4.14
(released in 2017), three are removed, and 11 still exist in the latest Linux kernel. We confirm four
of them as true bugs with the Linux community. The rest are identified as “bugs will happen only
in theory” by maintainers. They follow the pattern where a UBI bug can indeed occur if some error
condition occurs. However, such error conditions are related to hardware errors, which are unlikely
in practice. In other words, they are still bugs but are deemed low priority.
Recall Analysis. In our detailed examination of the Rnd-300 dataset, we observe that LLift does
notmiss any real bugs, achieving a recall rate of 100%. Despite the limited data sampled, this result
indicates that integrating GPT-4 into our implementation does not introduce apparent unsoundness.

As we delve further into our research, we assess the capability of our system to detect real bugs
that UBITect previously discovered using symbolic execution. Upon reviewing all 52 verified bugs
highlighted by UBITect, LLift accurately identifies every single one. This performance shows that
LLift empirically never misses real bugs that UBITect can discover.

Comparing to UBITect. UBITect can either report all cases in Rnd-300 as bugs from its static
analysis, causing a precision of 0.02, or ignore all of them due to the threshold of time or memory
in its symbolic execution, leading to a zero recall. LLift upgrades the scope of the UBITect analysis
to include those difficult cases and find more bugs in the Linux kernel. All the bugs found by

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

111:16 Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian

Table 3. Performance evaluation on a selected dataset (Cmp-40) of LLift with progressive addition of design

components: Post-Constraint Guided Path Analysis (PGA), Progressive Prompt (PP), Self-Validation (SV),

and Task Decomposition (TD). (C) indicates the number of Consistent cases of each setting.

Combination TN(C) TP(C) Precision Recall Accuracy F1 Score

Simple Prompt 12(9) 2(1) 0.12 0.15 0.35 0.13
PGA 13(9) 5(1) 0.26 0.38 0.45 0.31
PGA+PP 5(3) 6(1) 0.21 0.46 0.28 0.29
PGA+PP+SV 5(2) 11(8) 0.33 0.85 0.40 0.48
PGA+PP+TD 22(14) 6(4) 0.55 0.46 0.70 0.50
PGA+PP+TD+SV 25(17) 13(12) 0.87 1.00 0.95 0.93

Oracle 27(27) 13(13) - - - -

UBITect have trivial post-constraints (C𝑝𝑜𝑠𝑡 = ⊤) and InitStatus(𝑣) with may_init. Following our
methodology described in §4.3, LLift identifies all of them.
Imprecise and Failed Cases. Despite the effectiveness of LLift, there are still 13 false positives
by mistakenly classifying must_init cases as may_init. Upon carefully examining these cases, we
attribute the imprecision to various factors, which we discuss in detail in §6.6. Briefly, we give a
breakdown of them here: Incomplete constraint extraction (4 cases), Information gaps in UBITect (5
cases), and Missing runtime information (4 cases). Besides, Four cases exceed the maximum context
length while exploring deeper functions in the progressive prompt (i.e., > 8k tokens).

6.2 RQ2: Contributions of Design Components
Dataset. In RQ2, we craft Cmp-40 with all 13 positive cases and random 27 negative cases form
1,000 running cases (extended of Rnd-300) from RQ1.

In our effort to delineate the contributions of distinct design strategies to the final results, we
undertook an evaluative exercise against the Cmp-40 dataset, employing varying configurations of
our solution, each with a unique combination of our proposed strategies. As illustrated in Table 3,
the strategies under consideration encompass Post-Constraint Guided Path Analysis (PGA), Pro-
gressive Prompt (PP), Self-Validation (SV), and Task Decomposition (TD). The findings underscore
an overall trend of enhanced performance with the integration of additional design strategies.
In this study, the Simple Prompt corresponds to a straightforward prompt, "check this code to

determine if there are any UBI bugs", a strategy that has been found to be rather insufficient for
discovering new vulnerabilities, as corroborated by past studies [Ma et al. 2023; OpenAI (2023)
2023b; Tian et al. 2023], reflecting a modest recall rate of 0.15 and a precision of 0.12.
Incorporating Post-Constraint Guided Path Analysis (PGA) offers a notable enhancement, en-

abling the LLM to uncover a wider array of vulnerabilities. As shown in Table 3, there is a substantial
improvement in recall in comparison to the baseline, an anticipated outcome considering PGA’s
pivotal role in our solution. However, solely relying on this strategy still leaves a lot of room for
optimization.
The influence of Progressive Prompt (PP) on the results is quite intriguing. While its impact

appears to lower precision initially, the introduction of task decomposition and self-validation in
conjunction with PP reveals a substantial boost in performance. Without PP, the LLM is restricted
to deducing the function behavior merely based on the function context’s semantics without further
code analysis. Even though this approach can be effective in a range of situations, it confines
the reasoning ability to the information available in its training data. By checking the detailed

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

Enhancing Static Analysis for Practical Bug Detection: An LLM-Integrated Approach 111:17

Table 4. Comparison of different LLMs on real bugs, from typical of real bugs of UBITect

Caller GPT-4 GPT-3.5 Claude2 Bard

hpet_msi_resume ✓ ✓ ✓ ✗
ctrl_cx2341x_getv4lflags ✓ ✓ ✗ ✗
axi_clkgen_recalc_rate ✓ ✓ ✓ ✓
max8907_regulator_probe ✓ ✓ ✓ ✓
ov5693_detect ✓ ✓ ✗ ✓
iommu_unmap_page ✓ ✗ ✓ ✗
mt9m114_detect ✓ ✓ ✓ ✓
ec_read_u8 ✓ ✓ ✓ ✓
compress_sliced_buf ✓ ✓ ✗ ✓

conversation, we notice the omission of TD or SV tends to result in the LLM neglecting the
post-constraint, subsequently leading to errors.

Beyond influencing precision and recall, Task Decomposition (TD) and Self-Validation (SV) also
play a crucial role in enhancing consistency. In this context, a result is deemed consistent if the
LLM yields the same outcome across its initial two runs. A comparison between our comprehensive
final design encompassing all components, and the designs lacking TD and SV, respectively, reveals
that both TD and SV notably augment the number of consistent results, and deliver 17 and 23
consistent results in its negative and positive results, respectively, underscoring their importance
in ensuring reliable and consistent outcomes.
Finally, TD also holds significance in terms of conserving tokens. In our evaluation phase, we

identified two instances within the PGA+PP and PGA+PP+SV configurations where the token
count surpassed the limit set by GPT-4. However, this constraint was not breached in any case
when TD was incorporated.

In summary, all design components of LLift, including Post-Constraint Guided Path Analysis,
Progressive Prompt, Self-Validation, and Task Decomposition, contribute to its performance.

6.3 RQ3: Alternative Models
Dataset. In RQ3, we study the performance of LLift on top of alternative models with 9 typical
real bugs from UBITect. As we mentioned in RQ1, these cases are more straightforward with trivial
post-constraint (C𝑝𝑜𝑠𝑡 = ⊤).

Table 4 provides a comprehensive view of the performance of our solution, LLift, when imple-
mented across an array of LLMs including GPT-4, GPT-3.5, Claude 2 [Anthropic (2023) 2023], and
Bard [Krawczyk and Subramanya 2023]. GPT-4 passes all tests, while GPT-3.5, Claude 2, and Bard
exhibit recall rates of 89%, 67%, and 67%, respectively. Despite the unparalleled performance of
GPT-4, the other LLMs still produce substantial and competitive results, thereby indicating the
wide applicability of our approaches.

It is important to note that not all design strategies in our toolbox are universally applicable
across all language models. Bard and GPT-3.5, in particular, exhibit limited adaptability towards
the progressive prompt and task decomposition strategies. Bard’s interaction patterns suggest a
preference for immediate response generation, leveraging its internal knowledge base rather than
requesting additional function definitions, thereby hindering the effectiveness of the progressive
prompt approach. Similarly, when task decomposition is implemented, these models often misin-
terpret or inaccurately collect post-constraints, subsequently compromising the results. To harness

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

111:18 Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian

their maximum potential, we apply only post-constraint guided design specifically (i.e., without
other design strategies) for GPT-3.5 and Bard.
In contrasting with the GPT series, Bard and Claude 2 demonstrate less familiarity with the

Linux kernel and are more prone to failures due to their unawareness of the may_init possibility
of initializers. Overall, GPT-4 remains at the pinnacle of performance for LLift, yet other LLMs
can achieve promising results.

Table 5. Analysis result on Nginx. UBITect reports 11 potential bugs and all of them are false alarms. LLift

analyzes all of them correctly.

Initializer Caller File Path Variable Line Result

ngx_http_complex_value ngx_http_split_clients_variable http/modules/ngx_http_split_clients_module.c val 91 ✓
ngx_read_glob ngx_conf_include core/ngx_conf_file.c name 866 ✓
ngx_http_complex_value ngx_http_complex_value_size http/ngx_http_script.c value 126 ✓
ngx_strchr ngx_http_file_cache_set_slot http/ngx_http_file_cache.c p+1 2432 ✓
ngx_open_dir ngx_walk_tree core/ngx_file.c dir 989 ✓
ngx_array_init ngx_http_compile_complex_value http/ngx_http_script.c sc 226 ✓
ngx_parse_addr ngx_parse_addr_port core/ngx_inet.c text 671 ✓
ngx_file_size ngx_conf_parse core/ngx_conf_file.c &cf->conf_file->file 589 ✓
ngx_cpymem ngx_conf_parse core/ngx_conf_file.c dump->last 609 ✓
ngx_pstrdup ngx_conf_include core/ngx_conf_file.c file 873 ✓
ngx_calloc_buf ngx_http_range_body_filter http/modules/ngx_http_range_filter_module.c b->pos 932 ✓

Table 6. Analysis results on EDK-2 (CryptoPkg). The first five cases are real bugs identified by LLift, the rest

are false alarms of UBITect, LLift successfully recognizes 12 out of 13 among them.

Initializer Caller File Path Variable Line Result

ASN1_get_object Asn1GetTag .../Pk/CryptX509.c ObjTag 1903 ✓
ASN1_get_object Asn1GetTag .../Pk/CryptX509.c ObjCls 1904 ✓
ASN1_get_object X509GetTBSCert .../Pk/CryptX509.c Asn1Tag 842 ✓
ASN1_get_object X509GetCertFromCertChain .../Pk/CryptX509.c Asn1Tag 1838 ✓
ASN1_get_object X509VerifyCertChain .../Pk/CryptX509.c Asn1Tag 1741 ✓

gRT->GetTime time .../SysCall/TimerWrapper.c Time.Year 97 ✓
sscanf ipv4_from_asc .../crypto/x509v3/v3_utl.c a,b,c,d 1091 ✓
ssl_get_security_level_bits ssl_security_default_callback .../ssl/ssl_cert.c level 908 ✓
strtoul do_tcreate .../crypto/asn1/asn_mstbl.c *eptr 77 ✓
X509V3_get_value_bool alg_module_init .../crypto/evp/evp_cnf.c m 39 ✓
ASN1_get_object d2i_ASN1_OBJECT .../crypto/asn1/a_object.c tag 226 ✓
strtoul bitstr_cb .../crypto/asn1/asn1_gen.c *eptr 752 ✓
ASN1_INTEGER_get_int64 ASN1_INTEGER_get .../crypto/asn1/a_int.c r 547 ✓
x509_object_idx_cnt X509_STORE_CTX_get1_crls .../crypto/x509/x509_lu.c cnt 618 ✓
OBJ_find_sigid_algs x509_sig_info_init .../crypto/x509/x509_set.c mdnid 209 ✓
PEM_get_EVP_CIPHER_INFO pem_bytes_read_bio_flags .../crypto/pem/pem_lib.c cipher 255 ✓
sl2 FE .../crypto/aria/aria.c y.c 1082 ✗
skip_prefix equal_nocase .../crypto/x509v3/v3_utl.c *pattern 611 ✓

6.4 RQ4: Results on Projects Other Than Linux
Albeit the implementation and experiment of LLift primarily focuses on the Linux kernel, our
workflow should also work in other C projects. But since the Linux kernel is a well-known open-
source project with significant documentation that has been part of GPT’s training dataset, we are
curious whether our LLM-based solution can work well for other projects.
As mentioned, we chose two other projects: Nginx (version 1.18.0) [Nginx 2020] and EDK II

(version stable202211) [TianoCore 2022].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

Enhancing Static Analysis for Practical Bug Detection: An LLM-Integrated Approach 111:19

Table 5 shows the results on Nginx, UBITect reports 11 bugs, and all of them are not real bugs by
our manual check. LLift also identifies all of them as must_init, consistent with our manual check.

Table 6 shows the results for EDK II. Since UBITect produces a large number of bug reports, we
focus on a sub-module (CryptoPkg) where there are known UBI bugs. LLift performs well on this
project, identifies all actual bugs, and reports only one false positive (i.e., it treats a must_init case
as may_init) with regard to the initializer sl2. We find that the false positive is due to the lack of
struct definitions. Specifically, the variable y.c is an array and sl2 initializes the first four elements.
However, without knowing the exact definition of the struct, LLift can only give a conservative
result of may_init. Adapting the progressive prompt to fetch more information, e.g., structure
definitions, could resolve this issue.
Notably, these real bugs in EDK II are aligned with a recent patch2 (ObjTag and Asn1Tag) on

March 2023, which was not learned by gpt-4-0613 in its training. These Nginx and EDK II results
show the generality of LLift that can effectively work even in less popular projects.

6.5 Case Study
In this case study, we pick three interesting cases demonstrating the effectiveness of LLift in
analyzing function behaviors and detecting uninitialized variables. These cases contain difficult
patterns for program analysis, loops, and callbacks with function pointers. Symbolic execution of
UBITect is not capable of analyzing these examples; however, with the help of LLMs, LLift can
complete the analysis successfully. We also put the complete conversations on the anonymous
online page for reference.
Loop and Index. Figure 12 presents an intriguing case involving the variable pages[j], which is
reported by UBITect as used in Line 13 potentially without being initialized. Unfortunately, this
case is a false positive, which is hard to prune due to loops. Specifically, the initializer function
get_user_pages_unlocked(), which is responsible for mapping user space pages into the kernel
space, initializes the pages array allocated in Line 3. If get_user_pages_unlocked() is successfully
executed, pages[0] through pages[res-1] pointers will be initialized.

1 static int sgl_map_user_pages(...){
2 ...
3 if ((pages = kmalloc(...)) == NULL)
4 return -ENOMEM;
5 res = get_user_pages_unlocked(..., pages);
6 /* Errors and no page mapped ... */
7 if (res < nr_pages)
8 goto out_unmap;
9 ...
10 out_unmap:
11 if (res > 0) {
12 for (j=0; j < res; j++)

13 put_page(pages[j]);

14 res = 0;
15 }
16 kfree(pages);
17 }

Fig. 12. Case Study I (Loop and Index). Derived

from drivers/scsi/st.c

To summarize the behavior, i.e., must_init facts
under conditions where the use is reachable, we
must first extract the post-constraints that lead to the
use of pages. Through interacting with ChatGPT,
LLift successfully extracts it:
{

"initializer": "res =
get_user_pages_unlocked(uaddr, nr_pages,
pages, rw == READ ? FOLL_WRITE : 0)",

↩→
↩→
"suspicious": ["pages[j]"],
"postconstraint": "res < nr_pages && res > 0

&& j < res",↩→
}

After feeding the post-constraints to LLM, LLift
then successfully obtains the result:
{

"ret": "success",
"response": {

"must_init": ["pages[j]"],
"may_init": [],

}
}

2https://patchew.org/EDK2/20230324162146.588-1-mikuback@linux.microsoft.com/20230324162146.588-5-
mikuback@linux.microsoft.com

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

https://patchew.org/EDK2/20230324162146.588-1-mikuback@linux.microsoft.com/20230324162146.588-5-mikuback@linux.microsoft.com
https://patchew.org/EDK2/20230324162146.588-1-mikuback@linux.microsoft.com/20230324162146.588-5-mikuback@linux.microsoft.com

111:20 Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian

1 static int hv_pci_enter_d0(struct hv_device

*hdev){↩→
2 ...
3 init_completion(&comp_pkt.host_event);
4 pkt->completion_func =

hv_pci_generic_compl;↩→
5 pkt->compl_ctxt = &comp_pkt;
6 ...
7

8 wait_for_completion(&comp_pkt.host_event);
9

10 if (comp_pkt.completion_status < 0)

11 ...
12 }

13 static void hv_pci_generic_compl(void

*context, ...){↩→
14 struct hv_pci_compl *comp_pkt = context;
15

16 if (resp_packet_size >= offsetofend(...))
17 comp_pkt->completion_status =

resp->status;↩→
18 else
19 comp_pkt->completion_status = -1;
20

21 complete(&comp_pkt->host_event);
22 }

Fig. 13. Case Study II (Concurrency and Indirect Call). Derived from drivers/pci/host/pci-hyperv.c

1 int p9_check_zc_errors(...){
2 ...
3 err = p9pdu_readf(req->rc,

c->proto_version, "d", &ecode);↩→
4 err = -ecode ;
5 ...
6 }
7 int p9pdu_readf(struct p9_fcall *pdu, int

proto_version, const char *fmt, ...)↩→
8 ...
9 ret = p9pdu_vreadf(pdu, proto_version,

fmt, ap);↩→
10 ...
11 return ret;
12 }

13 int p9pdu_vreadf(..., va_list ap){
14 switch (*fmt) {
15 case 'd':{
16 int32_t *val = va_arg(ap, int32_t *);
17 if (pdu_read(...)) {
18 errcode = -EFAULT;
19 break;
20 }
21 val = ...; // initialization
22 }
23 return errcode;
24 }

Fig. 14. Case Study III (Unfamiliar Function), derived from net/9p

As we can see, GPT-4 exhibits impressive comprehension of this complex function. It perceives
the variable pages[j] being used in a loop that iterates from 0 to res-1. This insight leads GPT-4
to correctly deduce that all elements in the pages array must be initialized, i.e., they are must_init.
This example underscores GPT-4’s proficiency in handling loop and even index sensitivity.
Concurrency and Callback. Consider the case illustrated in Figure 13. At first glance, UBITect
flags Line 10 for potentially using the variable comp_pkt.completion_status before initialization.

The function’s body seemingly lacks any code that initializes it, leading UBITect to report it as a
potential bug. However, the mystery unravels when we examine hv_pci_generic_compl(), the
actual initializer function assigned to pkt in Line 4. The variable in question is indeed initialized,
but intriguingly, its initializer emerges from a concurrent function instead of within its own thread.
Here wait_for_completion() is a synchronization primitive that pauses the current thread and
waits for the new thread (i.e., hv_pci_generic_compl()) to complete. Despite this complexity,
GPT-4 adeptly navigates the concurrency and callback handling, pinpointing the accurate initializer
and outputting a precise result.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

Enhancing Static Analysis for Practical Bug Detection: An LLM-Integrated Approach 111:21

It is worth noting that we do not encode any knowledge about the Linux kernel synchronization
primitives. LLift prompts LLMs with “The ‘initializer’ must be the ‘actual’ function that initializes
the variable.” and then LLMs can automatically identify the function hv_pci_generic_compl() as
the initializer of comp_pkt.completion_status.
Unfamiliar Function. As outlined in Section §2.3, Large Language Models (LLMs) inherently
recognize the semantics of widely-used functions, such as sscanf(). Some critics contend that the
ubiquity of online documents explains why LLMs are familiar with them, suggesting the models
absorb this knowledge during training and act as a search engine [Chiang 2023]. However, our
study shows that LLMs perform well even with unfamiliar functions.

Figure 14 presents an intriguing real-world bug. The function p9pdu_readf(), used in a specific
submodule in the Linux kernel is much rarer than sscanf().

Compared to our motivating example, it lacks a check of its return value, leaving the parameter
ecode at risk of being uninitialized, i.e., if pdu_read() returns non-zero in line 19 (thus “break”
early). As mentioned earlier in §4.4, this case prompts GPT-4 requesting related function definitions
and then generates a summary. Furthermore, LLift also pinpoints that ecode could be initialized
when p9pdu_readf() returns 0, demonstrating the efficacy of LLift for unfamiliar cases. The
result is as follows:

{
"initializer": "err = p9pdu_readf(req->rc, c->proto_version, 'd', &ecode)",
"suspicious": ["ecode"],
"postconstraint": null,
"response": {

"must_init": [],
"may_init": [{ "name": "ecode", "condition": "p9pdu_readf returns 0"}]

}
}

6.6 Reason for Imprecision
Despite LLift achieving a precision about 50% in real-world applications, the precision can still be
improved in the future. Some can be solved with better prompts or better integration with static
analysis.
Information Gaps in UBITect. LLift is deliberately decoupled from UBITect in its design, which
creates some information gaps. For instance, UBITect does not provide explicit field names within a
structure when a specific field is in use. This information gap can result in LLift lacking precision
in its analysis. This challenge can be addressed with focused engineering efforts to enrich the
output information from UBITect.
Variables With Same Name. In general, the LLM usually confuses different variables in different
scopes (e.g., different function calls) with same name. For example, if the suspicious variable is ret
and passed as an argument to its initializer (say, func(&ret)) and there is another stack variable
defined in func also called ret, LLMs can confuse them. Explicitly prompting and teaching LLM to
note the difference does not appear to work. One solution is to leverage a simple static analysis to
normalize the source code to ensure each variable has a unique name.
Indirect Call. As mentioned §4.4, LLift follows a simple but imprecise strategy to handle indirect
calls. Theoretically, existing static analysis tools, such as MLTA [Lu and Hu 2019], can give possible
targets for indirect calls. However, each indirect call may have multiple possible targets and
dramatically increase the token usage. We leave the exploration of such an exhaustive strategy for
future work. LLift may benefit from a more precise indirect call resolution.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

111:22 Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian

Additional Constraints. There are many variables whose values are determined outside of
the function we analyze, e.g., preconditions capturing constraints from the outer caller. Since
our analysis is fundamentally under-constrained, this can lead LLift to incorrectly determine a
must_init case to be may_init. Mitigating this imprecision relies on analysis with a larger scope
to provide more information.

7 LIMITATIONS

Dependency on Closed-Source LLMs. Our work’s reproducibility is potentially limited due to
its reliance on GPT-4, a closed-source API with frequent updates. We specified the latest version
during the paper writing, gpt-4-0613. However, at the moment of the paper’s publication, the GPT
had multiple updates, and the model we used in this paper might be discarded as early as June
2024. This dependency could potentially threaten external validity. Nevertheless, our experiment
showed that while not as perfect as GPT-4, other LLMs such as Bard and Claude 2, can still produce
meaningful results. In the future, we will also experiment on open-sourced LLMs that can be trained
and fine-tuned locally, such as Llama 2 [Touvron et al. 2023], to facilitate reproducibility.
Data Bias from UBITect. The potential data bias introduced by UBITect could threaten the
internal validity of our study. Although the design of LLift is decoupled with UBITect, we only
make tests on top of it and its design and implementation may introduce bias into our experiment.
LLift may perform differently on other static analysis tools.

8 DISCUSSION AND FUTUREWORK

Post-Constraint Guidance with LLMs. The integration of post-constraint guided path analysis
and the analysis with LLMs in our system is a calculated design choice, underpinned by their
individual strengths and collective synergy. At its core, the post-constraint-guided approach is an
effective tool for optimizing and narrowing the scope of path exploration. While it excels in this
domain, comprehending and interpreting complex code semantics are still challenging.

Conversely, LLMs have consistently demonstrated prowess in code comprehension. Their ability
to reason about intricate code constructs makes them invaluable in scenarios that demand nuanced
understanding. By migrating this reasoning capability of LLMs to a static analysis framework, we
aim to bridge the gap between broad path optimization and in-depth code understanding.
Better Integration with Static Analysis. Our proposed solution operates independently of the
static analysis methods, taking only the bug report from static analysis. Looking into the future, we
can consider integrating static analysis and LLMs in a holistic workflow. For example, this could
involve selectively utilizing LLMs as an assistant to overcome certain hurdles encountered by static
analysis, e.g., difficulty in scaling up the analysis or summarizing loop invariants. In turn, further
static analysis based on these findings can provide insights to refine the queries to the LLM. This
iterative process could enable a more thorough and accurate analysis of complex cases. We believe
such a more integrated approach is a promising direction.
FromUBI to Other Bugs.Our decision to commence with Use-Before-Initialization (UBI) stemmed
from its inherent simplicity. Nevertheless, the foundational techniques we have crafted, particularly
encapsulating a function’s data flow with post-constraint guidance, indicate promising adaptability
for a spectrum of other bug types, such as use-after-free, out-of-bound read/write, and taint flow
analysis. While the transition from UBI to these more nuanced vulnerabilities will undoubtedly
introduce complexities, we envision a future ripe with opportunities for broadening the scope and
efficacy of our methodology.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

Enhancing Static Analysis for Practical Bug Detection: An LLM-Integrated Approach 111:23

9 RELATEDWORK

Techniques of Utilizing LLMs.Wang et al. [2023] propose an embodied lifelong learning agent
based on LLMs. Pallagani et al. [2023] explores the capabilities of LLMs for automated planning.
Weng [2023] summarizes recent work in building an autonomous agent based on LLMs and proposes
two important components for planning: Task Decomposition and Self-reflection, which are similar
to the design of LLift. Beyond dividing tasks into small pieces, task decomposition techniques also
include some universal strategies such as Chain-of-thought Wei et al. [2023] and Tree-of-thought
Yao et al. [2023a]. The general strategy of self-reflection has been used in several flavors: ReAct Yao
et al. [2023b], Reflexion Shinn et al. [2023], and Chain of Hindsight Liu et al. [2023]. Despite the
similarity in name, self-reflection is fundamentally different from self-validation in LLift where
the former focuses on using external sources to provide feedback to their models. Huang et al.
[2022] let an LLM self-improve its reasoning without supervised data by asking the LLM to lay out
different possible results. These techniques inspire us to leverage LLMs to build LLift.
LLMs for Vulnerability Detection. Sun et al. [2024] proposes GPTScan, combining GPT with
static analysis to detect logic vulnerabilities in smart contracts. While both GPTScan and LLift
utilize LLMs and static analysis, our approach addresses the challenges of static analysis in un-
covering vulnerabilities in large codebases (e.g., Linux kernel) and employs LLMs to augment its
effectiveness. In contrast, GPTScan uses static analysis to confirm vulnerabilities reported by LLMs
in smart contracts, which have only few hundreds of lines of code typically. Khare et al. [2023] uses
LLMs to perform dataflow analysis and detect vulnerabilities, showcasing superior performance
compared to traditional static analysis. In contrast, LLift explores how to synergize the strengths
of both LLMs and static analysis for vulnerability detection. To the best of our knowledge, LLift
is the first to demonstrate how to apply LLMs to overcome the limitations of static analysis and
enhance its bug-finding capabilities.
LLMs for Program Analysis. Ma et al. [2023] and Sun et al. [2023] explore the capabilities of
LLMs when performing various program analysis tasks such as control flow graph construction,
call graph analysis, and code summarization. They conclude that while LLMs can comprehend
basic code syntax, they are somewhat limited in performing more sophisticated analyses such as
pointer analysis and code behavior summarization. In contrast to their findings, our research with
LLift has yielded encouraging results. We conjecture that this might be due to several reasons:
(1) benchmark selection, i.e., Linux kernel vs. others. (2) Prompt designs. (3) GPT-3.5 vs. GPT-4.0 –
prior work only evaluated the results using only GPT-3.5. Pei et al. [2023a] prompt LLMs to focus
on reasoning about loop invariants with decent performance. In contrast, LLift leverages LLMs for
program behavior summarization and integrates LLMs successfully into a static analysis pipeline.
LLMs for Software Engineering. Xia and Zhang [2023] propose an automated conversation-
driven program repair tool using ChatGPT, achieving nearly 50% success rate. Ahmed et al. [2024]
show that code comprehension tasks can benefit from the semantics produced by static analysis on
the code. Pearce et al. [2023] examine zero-shot vulnerability repair using LLMs and find promise in
synthetic and hand-crafted scenarios but face challenges in real-world examples. Chen et al. [2023b]
teach LLMs to debug their own predicted programs to increase the correctness but only perform
on relatively simple programs. Pei et al. [2023b] proposes a new architecture of LLMs for program
reasoning tasks. Lemieux et al. [2023] leverages LLM to generate tests for uncovered functions
when the search-based approach got coverage stalled. Feng and Chen [2023] use LLM to replay
Android bugs automatedly. LangChain [2023] propose LangSimith, an LLM-powered platform for
debugging, testing, and evaluating. These diverse applications underline the vast potential of LLMs

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

111:24 Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian

in software engineering. LLift complements these efforts by demonstrating the efficacy of LLMs
in bug finding in the real world.

10 CONCLUSION
In our study, we present LLift, a pioneering framework that augments static analysis with LLMs
for effective and efficient UBI bug detection. Using post-constraint guided analysis, LLift enhances
path verification capabilities, addressing complex vulnerabilities. By leveraging a set of strategies
in prompting, LLift engages LLMs effectively, ensuring reliable and consistent outputs. Our tests
reveal LLift’s proficiency, identifying 13 new UBI bugs in the Linux kernel with a 50% precision.
This research underscores the promising fusion of LLMs with static analysis and lays a foundation
for future exploration in this area.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback. This work was supported in part
by the National Science Foundation under Grant No. 1953933 and 1652954. Any opinions, findings,
conclusions, or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

DATA-AVAILABILITY STATEMENT
We put all the code (for §4-5) and data for the experiment (§6) on Zenodo [Li et al. 2024]:
https://doi.org/10.5281/zenodo.10780591 and GitHub: https://github.com/seclab-ucr/LLift.
Besides, we also provide an online page to show our prompts and case studies:
https://sites.google.com/view/llift-open

REFERENCES
Toufique Ahmed, Kunal Suresh Pai, Premkumar Devanbu, and Earl T. Barr. 2024. Automatic Semantic Augmentation

of Language Model Prompts (for Code Summarization). In 2024 IEEE/ACM 45th International Conference on Software
Engineering (ICSE).

Anthropic (2023). 2023. Claude 2. https://www.anthropic.com/index/claude-2
Jiuhai Chen, Lichang Chen, Heng Huang, and Tianyi Zhou. 2023a. When do you need Chain-of-Thought Prompting for

ChatGPT? http://arxiv.org/abs/2304.03262 arXiv:2304.03262 [cs].
Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri

Burda, Nicholas Joseph, Greg Brockman, et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. 2023b. Teaching Large Language Models to Self-Debug.
http://arxiv.org/abs/2304.05128

Ted Chiang. 2023. ChatGPT Is a Blurry JPEG of the Web. The New Yorker (Feb. 2023). https://www.newyorker.com/tech/a
nnals-of-technology/chatgpt-is-a-blurry-jpeg-of-the-web Section: annals of artificial intelligence.

Copilot. 2023. GitHub Copilot documentation. https://docs.github.com/en/copilot/overview-of-github-copilot/about-
github-copilot-for-individuals

Sidong Feng and Chunyang Chen. 2023. Prompting Is All Your Need: Automated Android Bug Replay with Large Language
Models. https://doi.org/10.48550/arXiv.2306.01987 arXiv:2306.01987 [cs].

Anjana Gosain and Ganga Sharma. 2015. Static Analysis: A Survey of Techniques and Tools. In Intelligent Computing
and Applications (Advances in Intelligent Systems and Computing), Durbadal Mandal, Rajib Kar, Swagatam Das, and
Bijaya Ketan Panigrahi (Eds.). Springer India, New Delhi, 581–591.

J. Huang. 2007. Path-Oriented Program Analysis. https://doi.org/10.1017/CBO9780511546990
Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022. Large Language

Models Can Self-Improve. http://arxiv.org/abs/2210.11610 arXiv:2210.11610 [cs].
Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea Madotto, and Pascale

Fung. 2023. Survey of Hallucination in Natural Language Generation. Comput. Surveys 55, 12 (Dec. 2023), 1–38.
https://doi.org/10.1145/3571730

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

https://doi.org/10.5281/zenodo.10780591
https://github.com/seclab-ucr/LLift
https://sites.google.com/view/llift-open
https://www.anthropic.com/index/claude-2
http://arxiv.org/abs/2304.03262
http://arxiv.org/abs/2304.05128
https://www.newyorker.com/tech/annals-of-technology/chatgpt-is-a-blurry-jpeg-of-the-web
https://www.newyorker.com/tech/annals-of-technology/chatgpt-is-a-blurry-jpeg-of-the-web
https://docs.github.com/en/copilot/overview-of-github-copilot/about-github-copilot-for-individuals
https://docs.github.com/en/copilot/overview-of-github-copilot/about-github-copilot-for-individuals
https://doi.org/10.48550/arXiv.2306.01987
https://doi.org/10.1017/CBO9780511546990
http://arxiv.org/abs/2210.11610
https://doi.org/10.1145/3571730

Enhancing Static Analysis for Practical Bug Detection: An LLM-Integrated Approach 111:25

Ehud Karpas, Omri Abend, Yonatan Belinkov, Barak Lenz, Opher Lieber, Nir Ratner, Yoav Shoham, Hofit Bata, Yoav Levine,
Kevin Leyton-Brown, Dor Muhlgay, Noam Rozen, Erez Schwartz, Gal Shachaf, Shai Shalev-Shwartz, Amnon Shashua,
and Moshe Tenenholtz. 2022. MRKL Systems: A modular, neuro-symbolic architecture that combines large language
models, external knowledge sources and discrete reasoning. https://doi.org/10.48550/arXiv.2205.00445 arXiv:2205.00445
[cs]

Avishree Khare, Saikat Dutta, Ziyang Li, Alaia Solko-Breslin, Rajeev Alur, and Mayur Naik. 2023. Understanding the
Effectiveness of Large Language Models in Detecting Security Vulnerabilities. http://arxiv.org/abs/2311.16169
arXiv:2311.16169 [cs].

Jack Krawczyk and Amarnag Subramanya. 2023. Bard’s latest update: more features, languages and countries. https:
//blog.google/products/bard/google-bard-new-features-update-july-2023/

LangChain. 2023. Announcing LangSmith, a unified platform for debugging, testing, evaluating, and monitoring your LLM
applications. https://blog.langchain.dev/announcing-langsmith/

Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha Sen. 2023. CODAMOSA: Escaping Coverage
Plateaus in Test Generation with Pre-trained Large Language Models. (2023).

Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. 2024. Enhancing Static Analysis for Practical Bug Detection: An LLM-
Integrated Approach (Artifact). https://doi.org/10.5281/zenodo.10780591

Hao Liu, Carmelo Sferrazza, and Pieter Abbeel. 2023. Chain of Hindsight Aligns Language Models with Feedback. http:
//arxiv.org/abs/2302.02676 arXiv:2302.02676 [cs].

Kangjie Lu and Hong Hu. 2019. Where Does It Go?: Refining Indirect-Call Targets with Multi-Layer Type Analysis. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. ACM, London United
Kingdom. https://doi.org/10.1145/3319535.3354244

Wei Ma, Shangqing Liu, Wenhan Wang, Qiang Hu, Ye Liu, Cen Zhang, Liming Nie, and Yang Liu. 2023. The Scope of
ChatGPT in Software Engineering: A Thorough Investigation. http://arxiv.org/abs/2305.12138 arXiv:2305.12138 [cs].

Nginx. 2020. nginx. https://nginx.org/en/
OpenAI (2022). 2022. Introducing ChatGPT. https://openai.com/blog/chatgpt
OpenAI (2023). 2023a. Function calling and other API updates. https://openai.com/blog/function-calling-and-other-api-

updates
OpenAI (2023). 2023b. GPT-4 Technical Report. http://arxiv.org/abs/2303.08774 arXiv:2303.08774 [cs].
Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal,

Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell,
Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. 2022. Training language models to follow instructions with
human feedback. http://arxiv.org/abs/2203.02155 arXiv:2203.02155 [cs].

Vishal Pallagani, Bharath Muppasani, Keerthiram Murugesan, Francesca Rossi, Biplav Srivastava, Lior Horesh, Francesco
Fabiano, and Andrea Loreggia. 2023. Understanding the Capabilities of Large Language Models for Automated Planning.
http://arxiv.org/abs/2305.16151 arXiv:2305.16151 [cs].

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022. TALM: Tool Augmented Language Models. https://doi.org/10.48550/arXiv.2
205.12255 arXiv:2205.12255 [cs]

Jihyeok Park, Hongki Lee, and Sukyoung Ryu. 2022. A Survey of Parametric Static Analysis. ACM Comput. Surv. 54, 7
(2022), 149:1–149:37. https://doi.org/10.1145/3464457

Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Brendan Dolan-Gavitt. 2023. Examining Zero-Shot
Vulnerability Repair with Large Language Models. In 2023 IEEE Symposium on Security and Privacy (S&P). IEEE Computer
Society, Los Alamitos, CA, USA. https://doi.org/10.1109/SP46215.2023.00001

Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng Yin. 2023a. Can Large Language Models Reason about
Program Invariants?. In Proceedings of the 40th International Conference on Machine Learning.

Kexin Pei, Weichen Li, Qirui Jin, Shuyang Liu, Scott Geng, Lorenzo Cavallaro, Junfeng Yang, and Suman Jana. 2023b.
Symmetry-Preserving Program Representations for Learning Code Semantics. http://arxiv.org/abs/2308.03312
arXiv:2308.03312 [cs].

Luke Salamone. 2021. What is Temperature in NLP? https://lukesalamone.github.io/posts/what-is-temperature/ Section:
posts.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola Cancedda, and
Thomas Scialom. 2023. Toolformer: Language Models Can Teach Themselves to Use Tools. https://doi.org/10.48550/arX
iv.2302.04761 arXiv:2302.04761 [cs]

Jessica Shieh. 2023. Best practices for prompt engineering with OpenAI API | OpenAI Help Center. https://help.openai.co
m/en/articles/6654000-best-practices-for-prompt-engineering-with-openai-api

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. 2023. Reflexion:
Language Agents with Verbal Reinforcement Learning. http://arxiv.org/abs/2303.11366 arXiv:2303.11366 [cs].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

https://doi.org/10.48550/arXiv.2205.00445
https://arxiv.org/abs/2205.00445 [cs]
https://arxiv.org/abs/2205.00445 [cs]
http://arxiv.org/abs/2311.16169
https://blog.google/products/bard/google-bard-new-features-update-july-2023/
https://blog.google/products/bard/google-bard-new-features-update-july-2023/
https://blog.langchain.dev/announcing-langsmith/
https://doi.org/10.5281/zenodo.10780591
http://arxiv.org/abs/2302.02676
http://arxiv.org/abs/2302.02676
https://doi.org/10.1145/3319535.3354244
http://arxiv.org/abs/2305.12138
https://nginx.org/en/
https://openai.com/blog/chatgpt
https://openai.com/blog/function-calling-and-other-api-updates
https://openai.com/blog/function-calling-and-other-api-updates
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2305.16151
https://doi.org/10.48550/arXiv.2205.12255
https://doi.org/10.48550/arXiv.2205.12255
https://arxiv.org/abs/2205.12255 [cs]
https://doi.org/10.1145/3464457
https://doi.org/10.1109/SP46215.2023.00001
http://arxiv.org/abs/2308.03312
https://lukesalamone.github.io/posts/what-is-temperature/
https://doi.org/10.48550/arXiv.2302.04761
https://doi.org/10.48550/arXiv.2302.04761
https://arxiv.org/abs/2302.04761 [cs]
https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-openai-api
https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-openai-api
http://arxiv.org/abs/2303.11366

111:26 Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian

Yisheng Song, Ting Wang, Puyu Cai, Subrota K. Mondal, and Jyoti Prakash Sahoo. 2023. A Comprehensive Survey of Few-
shot Learning: Evolution, Applications, Challenges, and Opportunities. Comput. Surveys 55, 13s (July 2023), 271:1–271:40.
https://doi.org/10.1145/3582688

Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-flow analysis in LLVM. In Proceedings of the 25th
international conference on compiler construction. ACM, 265–266.

Weisong Sun, Chunrong Fang, Yudu You, Yun Miao, Yi Liu, Yuekang Li, Gelei Deng, Shenghan Huang, Yuchen Chen,
Quanjun Zhang, Hanwei Qian, Yang Liu, and Zhenyu Chen. 2023. Automatic Code Summarization via ChatGPT: How
Far Are We? http://arxiv.org/abs/2305.12865 arXiv:2305.12865 [cs].

Yuqiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Haijun Wang, Zhengzi Xu, Xiaofei Xie, and Yang Liu. 2024. GPTScan:
Detecting Logic Vulnerabilities in Smart Contracts by Combining GPT with Program Analysis. In 2024 IEEE/ACM 45th
International Conference on Software Engineering (ICSE).

Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-Chi Cheung, Jacques Klein, and Tegawendé F. Bissyandé. 2023. Is
ChatGPT the Ultimate Programming Assistant – How far is it? http://arxiv.org/abs/2304.11938 arXiv:2304.11938 [cs].

TianoCore. 2022. tianocore/edk2. https://github.com/tianocore/edk2
Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra,

Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David
Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning
Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein,
Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan,
Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela
Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023.
Llama 2: Open Foundation and Fine-Tuned Chat Models. http://arxiv.org/abs/2307.09288 arXiv:2307.09288 [cs].

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. 2017. Attention is All you Need. In Advances in Neural Information Processing Systems, Vol. 30. Curran
Associates, Inc.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima Anandkumar.
2023. Voyager: An Open-Ended Embodied Agent with Large Language Models. http://arxiv.org/abs/2305.16291
arXiv:2305.16291 [cs].

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou.
2023. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. http://arxiv.org/abs/2201.11903
arXiv:2201.11903 [cs].

Lilian Weng. 2023. LLM-powered Autonomous Agents. lilianweng.github.io (Jun 2023). https://lilianweng.github.io/posts/2
023-06-23-agent

Chunqiu Steven Xia and Lingming Zhang. 2023. Keep the Conversation Going: Fixing 162 out of 337 bugs for $0.42 each
using ChatGPT. http://arxiv.org/abs/2304.00385

Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A systematic evaluation of large language
models of code. In Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming. ACM, San
Diego CA USA, 1–10. https://doi.org/10.1145/3520312.3534862

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik Narasimhan. 2023a. Tree of
Thoughts: Deliberate Problem Solving with Large Language Models. http://arxiv.org/abs/2305.10601 arXiv:2305.10601
[cs].

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. 2023b. ReAct: Synergizing
Reasoning and Acting in Language Models. International Conference on Learning Representations (ICLR) (2023).

Yizhuo Zhai, Yu Hao, Hang Zhang, DaimengWang, Chengyu Song, Zhiyun Qian, Mohsen Lesani, Srikanth V. Krishnamurthy,
and Paul Yu. 2020. UBITect: A Precise and Scalable Method to Detect Use-before-Initialization Bugs in Linux Kernel. In
Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE 2020).

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang,
Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023. A Survey of Large Language Models. arXiv:2303.18223 [cs.CL]

Shen Zheng, Jie Huang, and Kevin Chen-Chuan Chang. 2023. Why Does ChatGPT Fall Short in Providing Truthful Answers?
http://arxiv.org/abs/2304.10513 arXiv:2304.10513 [cs].

Received 21-OCT-2023; accepted 2024-02-24

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 111. Publication date: April 2024.

https://doi.org/10.1145/3582688
http://arxiv.org/abs/2305.12865
http://arxiv.org/abs/2304.11938
https://github.com/tianocore/edk2
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2305.16291
http://arxiv.org/abs/2201.11903
https://lilianweng.github.io/posts/2023-06-23-agent
https://lilianweng.github.io/posts/2023-06-23-agent
http://arxiv.org/abs/2304.00385
https://doi.org/10.1145/3520312.3534862
http://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2303.18223
http://arxiv.org/abs/2304.10513

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 UBITect and Motivating Example
	2.2 General Challenges of Static Analysis in Practices
	2.3 Capability of LLMs

	3 Problem Formulation
	3.1 System Definition
	3.2 Post-Constraint Guided Path Analysis
	3.3 Conceptual Workflow

	4 LLM-Based Program Analysis
	4.1 Prompt Overview
	4.2 Design Challenges and Solutions
	4.3 D#1: Post-Constraint Guided Path Analysis
	4.4 D#2: Progressive Prompt
	4.5 Other Prompt Design

	5 Implementation
	6 Evaluation
	6.1 RQ1: Performance
	6.2 RQ2: Contributions of Design Components
	6.3 RQ3: Alternative Models
	6.4 RQ4: Results on Projects Other Than Linux
	6.5 Case Study
	6.6 Reason for Imprecision

	7 Limitations
	8 Discussion and Future Work
	9 Related Work
	10 Conclusion
	References

