
Assisting Static Analysis with Large
Language Models: A ChatGPT Experiment
HAONAN L I , Y U HAO , Y I ZHUO ZHA I , ZH I Y UN Q I AN

UC R I V E R S I D E

Background & Motivation

1. Existing static analysis, UBITect [1], detecting use-
before-initialization in the Linux kernel, may ignore 40%
potential bugs due to time/mem out

2. ChatGPT can understand code, may handle these ignored
potential bugs

[1] Yizhuo Zhai, Yu Hao, et.al. “UBITect: A Precise and Scalable Method to Detect Use-before-
Initialization Bugs in Linux Kernel.” In FSE’20. https://doi.org/10.1145/3368089.3409686.

https://doi.org/10.1145/3368089.3409686

Background:
UBITect

Two stages:

1. Static analysis
(scalable, imprecise)

2. Symbolic execution
to verify potential
bugs (precise,
inefficient)

40% undecided: symbolic execution timeout/memory out

Case study: sscanf

No UBI bug here, but:

1. Static analysis (path-
insensitive): may
initialize a, b, c, d

2. Symbolic execution:
timeout because of
path explosion

Case study: sscanf

No UBI bug here, but:

1. Static analysis (path-
insensitive): may
initialize a, b, c, d

2. Symbolic execution:
timeout because of
path explosion

Idea: Ask ChatGPT for Code Behavior

Ask ChatGPT (simplified):
◦ Q: ”are variables a, b, c, d to be initialized before reaching Line 5”

◦ A: ”a, b, c, d” are initialized at sscanf(…)>=4

Scan to see the chat!

Workflow

1. For each potential use-before-initialization, find the “use”
site

2. Ask ChatGPT, “Whether the variables be initialized
before the use”

3. If answered “initialized”, then not a bug

Workflow: with UBITect

Challenge: Unfamiliar Functions
How about “unfamiliar functions”!
◦ Not all functions are popular as sscanf, ChatGPT can’t recognize them

We can’t provide all relevant context:
◦ Token limitation: GPT-4 supports 32k tokens

◦ Expensive, slow, and low-quality response for long content [2]

Intuition: we have an AI! Let ChatGPT decide for itself!
[2] Bito AI, Claude 2.1 (200K Context Window) Benchmarks. https://bito.ai/blog/claude-2-1-200k-
context-window-benchmarks/

Progressive
Prompt

◦ Prompt with, “if you
meet unfamiliar
functions, tell me”

◦ Then we provide
function definitions

◦ Fully automated

Result

◦ For false positives (not a
bug), performs well

◦ For false negatives (missed
bugs), not perfect yet

Limitation & Future work

1.Only UBI, but the principles should work on
other bugs

2.Highly relies on GPT-4, need additional
designs for weaker models

Conclusion

1. Can LLM assist in program analysis? Yes

2. How can LLM assist in program analysis? By asking
program behavior

3. How can we limit the analysis scope? With progressive
prompt

Thanks for Your Listening

Learn more about our subsequent
works: arXiv:2308.00245 [cs.SE]

GPTs on a break !: No AI assistance
for this paper and presentation

Prompt Design: seclab-ucr/GPT-Expr

https://arxiv.org/abs/2308.00245
https://github.com/seclab-ucr/GPT-Expr

