
Haonan Li, Yu Hao, Yizhuo Zhai, Zhiyun Qian
University of California, Riverside

Enhancing Static Analysis for Practical Bug Detection:

An LLM-Integrated Approach

In Bug Detection

Motivation: Challenges of Static Analysis

• False Positives and Negatives

• Complexity, Scalability

• Limited Domain Knowledge

• Thinking: how to solve these
challenges? 🤔

An LLM-integrated Approach

Enhance Static Analysis

• Compared to static analysis, LLM has:

• ✅ Domain knowledge & heuristics

• ✅ Smart summary for complex code

• ❌ Unstable response

• ❌ Limited reasoning on code

• Problem: Can we enhance static analysis by integrating LLM?🤔

Case Study: UBITect

• UBITect [1]: finding Use-Before-Initialization (UBI)
bugs in the Linux kernel

• UBI: variables may be used before they are
initialized.

• Shows the challenges of static analysis:

• FP and FN

• …

[1] Yizhuo Zhai, Yu Hao, et.al. “UBITect: A Precise and Scalable Method to Detect Use-before-Initialization Bugs
in Linux Kernel.” In FSE’20. https://doi.org/10.1145/3368089.3409686.

A typical UBI bug, v may not be initialized
before reaching Line 5

https://doi.org/10.1145/3368089.3409686

False Positives and Negatives

Case Study: UBITect

Two Stages:

1. Static analysis (scalable, imprecise)

2. Symbolic execution (precise, slow)

Dilemma:

• FP: >95% FP in static analysis; utilizing
symbolic execution to filter out FP

• FN: discarding 40% undecided cases,
may ignore 40% potential bugs (due
to time/memory limitation)

The overview of UBITect.

Motivating Example: sscanf

• Static analysis: sscanf may not initialize a,
b, c, d （path-insensitive）

• Report a UBI bug at Line 5

• Static analysis: sscanf may not initialize a,
b, c, d （path-insensitive）

• Report a UBI bug at Line 5

• Symbolic execution: timeout

Understand sscanf with LLM

Ask ChatGPT: “are variables a, b, c, d to be
initialized before reaching Line 5?”

• …sscanf here to parse IP address … by the
time the code reaches the line … a, b, c,
d have been initialized

Scan me to see the chat!

LLift: LLM for Undecided Cases

• LLM-based framework: LLift.

• Asking LLM, “are these
variables initialized before
their use”

• “must_init” -> not a bug
The overview of UBITect w/ LLift

Directly Ask GPT

• Challenge: “simple
prompt” doesn’t work

• Bug detection requires
multiple steps w/
rigorous rules

• LLM is unaware of
them

• SOLUTION: Teach LLM
the steps and rules of
bug detection

Design Principles

• Task Decomposition (TD): break the task into
small pieces

• Post-constraint Guided Path Analysis (PGA)

Design Principles

• Task Decomposition (TD): break the task into
small pieces

• Post-constraint Guided Path Analysis (PGA)

• Progressive Prompt (PP): Let LLMs decide the
what they want (for function definitions)

Workflow

• Identify the initializer

• Extract post-constraints

• Analyze the initializer with
post-constraint guidance

Evaluation

• Precision and Recall

• Other Models than GPT-4

• Dataset: Rnd-300

• randomly choose 300 from 53,000
undecided cases

• Other projects than Linux

• Contributions of each design
component

Precision & Recall

• Precision: 5 TP, 50%
precision

• Recall: no missed bugs
found in Rnd-300

• Extend to 1000, 13 TP and
13 FP

• 4 of them are confirmed as
real bugs

True positives of LLift on Rnd-300. Above is 5TP on Rnd-300,
below is 8TP scaled up to 1000

• Disclaimer: not reported
in the paper

• LLift works on (most)
other models

• Llama shows usable
results

Other Models

Summary

• We present LLift, the first work to show how to
use LLM to improve static analysis in practice.

• LLift introduces new design strategies (PGA, PP),
which can also help future studies.

• We test LLift on real-world codebase, achieving
good precision and recall, and finding 13 new TP.

Learn more details:
sites.google.com/view/llift-open

https://sites.google.com/view/llift-open

